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Dynamical properties of a Haldane-gap antiferromagnet 

0 Golinelli, Th Jolicceurt and R Lacazet 
Service de Physique "h&rique$, CE Saclay, F-91191 Gif-sur-Yvette Gdex, France 

Received 1 December 1992 

Abslraci We study the dynamic spin correlation funclion of a spin-1 antiferromagnetic 
chain with easy-plane single-ion anisotmpy. We we exact diagonalization bj the l a n d s  
method for chains of length up to N = 16 spins We show that a single-mode 
approximation is an excellent descliption of the dynamical pmpenies. A MrhtiOMl 
calculation allows us io clarify the nature of the excitations "he existence of a two- 
panicle continuum near-zero wavevector is clearly seen, both in finite-size dfeCrr and 
in the dynamical stmciure faclor. "he recent neuimn scattering aperimenrs on the 
quasi-onedimensional antiferromagnet mNP a R  fully explained by our mulls. 

1. Jntmduction 

It was first argued by Haldane [1,2] that generic spin-S one-dimensional Heisenberg 
antiferromagnets have an excitation gap for integer S. This picture is quite different 
from the usual, higher-dimensional, picture of antiferromagnets with massless 
Goldstone magnons. On the theoretical side, there is now convincing evidence from 
numerical studies [3-101 of the S = 1 Heisenberg chain that it has a non-zero gap 
in the thermodynamic limit. Exact diagonalizations by the Lancz6s method have 
been able to reach 18 spins, and Monte Carlo simulations extend the range to 32 
spins. All these data are suggestive of a Haldane gap. This leads to a ground-state 
spin correlation length which is finite and about six lattice spacings. Such a picture 
js in striking contrast to the S = 1/2 solvable chain, which is gapless and whose 
ground state has algebraically decaying mrrelations. A spin-1 Heisenberg model with 
biquadratic exchange has also been discovered with an exactly solvable ground state 
and a non-zero gap 1111, thus reinforcing the belief in the Haldane conjecture. 

On the experimental side, there are several candidates to exhibit this quantum 
gap. The first experimental evidence came from neutron scattering on the compound 
cSNiC1, [12-1q. In this compound there are chains of spin-1 Ni2+ ions with 
superexchange through c1- anions. There are, however, moderately small interchain 
couplings that complicate the picture: this is revealed in recent experiments on 
the related compound RbNiCI, [16]. The best candidate so far seems to be 
Ni(~H,N,),NO,CIO, (NENP) 117-201, as shown by inelastic neutron scattering (INS) 
and magnetization measurements. The ratio of the interchain to intrachain magnetic 
coupling is estimated to be J'/ J % 4 x No transition to Nee1 order is found 
down to 1 .29  which is consistent with the hypothesis of a f i d e  zero-temperature 
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correlation length. Nkkei ions have spin one, and are described by the following 
anisotropic Heisenberg Hamiltonian [21]: 

H = J C S j * S i + 1 + D C ( S , t ) 2 .  (1.1) 
i i 

A best fit of INS gap values leads to J / k ,  = 43.5K and easy-plane D / J  = 0.18 [lo]. 
There is also evidence for a smaller in-plane anisotropy that can be. described by 
adding to H a term E C i [ ( S F ) 2  - (Sf)2]. This perturbation is small and will be 
mostly ignored in the remainder of this paper. Its qualitative role will be discussed 
in section 5. 

The tirst INS measurements [17-191 have concentrated on the neighbourhood of 
Q = A (where Q is the wavevector along the chain) and showed the existence of 
two gaps: one for the in-plane (IP) magnetic fluctuations and a higher one for out-of- 
plane (OP) fluctuations. Thii splitting is due to the presence of a sizable easy-plane 
single-ion anisotropy D. The dispersion of the magnetic excitations was then studied 
in the range Q/a = 0.9-1.0. Recent experiments have extended our knowledge 
throughout the whole Brillouin zone [22]. Detailed theoretical work is required to 
test the hypothesis that the simple model Hamiltonian (1.1) is able to reproduce the 
dynamical properties of NENP. 'Rvo approaches have been followed up to now small- 
duster numerical studies [?-lo, U] and the use of effective-field theories [24, U]. The 
previous numerical studies were limited to spectral calculations or have ignored the 
presence of in-plane anisotropy. 

In this paper we present the results of a study of the dynamical s m a u r e  factor 
S( Q, w )  of chains of length up to 16 spins by means of an exact diagonalization 
method. We also apply a variational technique proposed in [26] to the anisotropic 
chain. This physically motivated method reproduces extremely well the numerical 
results. The results presented are valid in the absence of an external magnetic field 
and in the zero-temperature limit, i.e. for temperatures well below the gap. In 
section 2 we present some general properties of the spin-1 chain with easy-plane 
single-ion anisotropy. In section 3 we explain the methods used to obtain dynamical 
quantities. Section 4 contains our results. They are extremely well reproduced 
in terms of a physically appealing single-mode approximation. The results of our 
variational calculation are presented there, and we use them to understand the nature 
of the elementary excitations near Q = 0 and Q = a. We show in section 5 that they 
are in very good agreement with existing neutron data, and we suggest an additional 
test of the theory. Section 6 contains our conclusions. 

2. General properties 

We briefly review some !mown results about the isotropic Heisenberg spin-1 
antiferromagnetic (U) chain: 

The vectors Si are quantum spin operators satisfying the SU(2) rotation algebra 
with Length Si2 = 2. They are located along a onedimensional lattice of N sites 
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with periodic boundary conditions. The exchange integral J is positive in the AF 
case. For any finite lattice the ground state is a singlet and the higher-lying levels 
have energy increasing with increasing spin, as is known rigorously [271. Above the 
singlet ground state one finds a triplet state, presumably for all values of N .  In 
an AF quantum magnet, in the case of broken symmetry, one expects that in the 
thermodynamic limit the triplet becomes degenerate with the ground state as do 
other states with spin S = 2, 3,. . ., in order to form the degenerate ground state of 
the infinitevolume limit. This can occur only for dimensions greater than or equal 
to 2 Haldane has argued that the spin-I chain is quantum disordered and that the 
singlet-triplet gap remains non-zero in the thermodynamic limit. This should be true 
for any integer value of the spin. This argument is based on a mapping of the infinite- 
spin semiclassical limit of the quantum chain onto an O(3) non-hear U model [l]. 
In the spin-1 case of interest, numerical studies clearly point towards a gap close to 
FT 0.415 [3-10,231. The physics of the O(3) non-linear U model is that of a triplet 
of massive bosons with non-trivial scattering properties. This suggests a very simple 
effectivefield theory: a free theory of three massive bosons [Z]. Another route, 
starting from an integrable model, leads to an effectivefield theory of three massive 
fermions 1241. 

In such approaches one has to adjust the gap values, which are no longer deducible 
from the microscopic model, but one can obtain simple and definite predictions on 
dynamical quantities. However, both are approximate theories and their respective 
domains of validity are difficult to assess. On the other hand, finite-chain calculations 
offer unbiased theoretical predictions provided one is able to carefully control finite- 
size effects. Concerning the gap mlues this can be achieved by the use of the so-called 
Shanks transformation, suited to the removal of exponential transients in sequences 
of finite-chain data [B]. It has been found that the convergence towards infinite 
volume is very good [6,10,23], which is as expected since we are dealing with a 
massive theory. We are in a situation where the spin correlation length, FT 6 lattice 
spacings, is already smaller than the longest chains we use. 

As shown with the Perron-Frobenius theorem [29], the lowest-lying triplet has 
wavevector Q = ?i, while the singlet ground state has Q = 0. Most theoretical and 
experimental studies have concentrated on this Q = T part of the spectrum. In the 
non-linear U model, there are no bound states and, if we believe that it is the effective 
theory of the spin-1 chain, this implies that the Q = 0 gap is due to two massive 
Q = n particles and thus twice the Q = T gap [2]. This has been checked by a 
quantum Monte Carlo simulation in the isotropic case [SI and Lancz6s studies [23] 
have shown that this property persists in the presence of anisotropy (as long as it 
is not too large). As a consequence, the states near Q = 0 should be members 
of a two-particle continuum, contrary to the states near Q = n that should appear 
as long-lived well defined excitations. INS measurements for Q = 0 [30] reveal a 
vanishing structure factor in this regime. The curve of the lowest excited triplet at 
wavevector Q is thus bell shaped, but asymmetrical with respect to Q = n/2  

Let us now discuss the influence of easy-plane single-ion anisotropy, i.e. adding 
to Ho a term of the following form: 

H = H,+ D c ( S t ) 2 .  
i 

The full rotational symmetry of Hamiltonian (2.1) is broken to rotational symmetry 
around the z axis. Only the z component Sz = xi  S,t of the total spin is conserved. 
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There is also a discrete symmetry S" -+ -S* that is preserved in the Hamiltonian 
(22). As a consequence of the anisotropy, the first excited triplet state is split into 
a higher-energy singlet, Sz = 0, and a lower-lying doublet, Sz = fl. These three 
states retain their wavevectors unchanged (Q = rr) with respect to the D = 0 case 
(by continuity) since the Hamiltonian (2.2) still possesses translational symmetry. The 
Haldane gap is split into two components: one gap G(-) between the ground state 
(with S" = 0) and the doublet S' = &1 and one gap G(+) inside the S' = 0 
subspace between the first two levels. The gap G(-) decreases while G(+) increases 
with increasing D, as shown quantitatively in [lo]. 

We expect this simple picture to be true for all wavevectors 0 < Q < r since 
the triplet states with arbitrary Q will also be split by the anisotropy. There are thus 
two distinct magnetic modes throughout the Brillouin zone: one IP (in-plane) mode 
(doubly degenerate) and one OP (out-of-plane) mode. The IP mode is Seen in the 
Sz = fl sector while the OP mode appears in the S" = 0 sector. The dispersion of 
the IP mode has been obtained for various anisotropies, including that of NENP in [23]. 
INS experiments [17-19,221 have resolved these two modes in the neighbourhood of 
Q = 7: the OP mode is found at 25meV, and the IP mode is even further resolved 
into two components at 1.05meV and 1.25meV. Thiis splitting is due m a small in- 
plane anisotropy of the type E C j [ ( S r ) z  - (SIy)2] that lifts the degeneracy of the 
doublet states S' = Al.  These values of the gaps (ignoring the in-plane anisotropy) 
lead to J = 44K and D / J  = 0.18 [IO]. Detailed interpretation of INS requires a 
calculation of the structure factor S( Q,w). 

3. Evaluating dynamical quantities 

We describe in this section the methods used to compute the dynamical structure 
factor 

so"(Q.w) = J d t e  iwz ( 0 I so -Q(t)S;(0)lO) 0 = Z , E I , Z .  (3.1) 

Here we denote the ground state by 10) and the components of the Fourier transform 
of the spin vectors are S g ( t )  in the Heisenberg representation. We first write the 
structure factor as 

S"*(Q,w) = X ~ ( W  - (6% - d)l(nls;lo)l* ( 3 4  
n 

where the sum over In) means over all excited eigenstates of the system and en 
denotes the energy of In). In a finite-system calculation, one obtains a finite set of 
delta functions with weights given by the matrix elements appearing in (3.2). The 
L a n d s  method, which is commonly used to obtain the ground-state wavefunction 
and the first few excited levels, is suited to the study of the dynamical properties [31]. 

We proceed as follows. 
(i) One needs to know first the vector 10). We use the Lancz6s algorithm applied 

(U) One wnstructs the state 
to the Hamiltonian X. In fact, any kind of algorithm can be used at this level. 

IQ") = S$lO). (3.3) 
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This state IO,) is then used to build a new L a n d s  sequence of states IO,) by 
the standard procedure of applying the Hamiltonian to 10,) and orthonormalization 
with respect to the last two vectors lak) and lak-,). The Hamiltonian H is then 
tridiagonal in the basis {IOn)}. The non-zero elements of H in this basis are 
directly provided by the orthonormalization procedure. We exhaust the corresponding 
subspace and store the tridiagonal form of the Hamiltonian. 

(E) One diagonalizes the tridiagonal Hamiltonian by a standard routine. This 
leads to a set of eigenenergies, E,, as well as the eigenvectors whose first coordinate 
in the Lanczds basis are precisely the overlap matrix elements (.IOu) that appear in 
the definition of the structure factor (3.2). We thus obtain the weight of each delta 
function peak. This has to be done separately for each Q as well as for a = o, z. 

In the isotropic D = 0 case the ground state is a singlet: S;=,lO) = 0 and 
thus S""(Q = 0 ,w)  = 0. The vanishing with Q will occur quadratically. In 
the presence of easy-plane anisotropy the ground state is invariant only under z 
rotations: S&,lO) = 0 and thus Szz(Q = 0 , w )  = 0, while S"(= S Y Y )  will be 
non-zero at Q = Oand O(Dz).  Wlth in-plane anisotropy ECi[(ST)z-(S!)z],  even 
Szz(Q = 0) will be non-zero and O(E*). 

4 Results lor S ( Q , w )  

We have computed the structure factors Sss(Q,w)  and Szz(Q,w)  for chains of 
lengths N = 4, 6, 8, 10, 12, 14, 16. Some Q = 0 and Q = x parts of the 
spectrum have also been computed for N = 18. We have concentrated on the case 
DIJ = 0.18, which is quantitatively relevant to the study of NEW. Our results extend 
smoothly for not too large anisotropy, D < J .  For D = 0 we reproduce previous 
findings [8] concerning the lowest excited levels. Previous Monte Carlo measurements 
of the dynamical structure factor [9] for D = 0 are also compatible with our data. 

According to the definition (3.2), we will fust discuss the peak positions and then 
the corresponding weights. What we observe is that for all k e d  wavevector Q, as 
a function of w the lowest-lying peak concentrates almost all of the spectral weight. 
This remark will be made quantitatively precise at the end of this section. This lowest- 
lying peak occurs when the frequency w matches the energy of the first excited level 
with the right quantum numbers. 

we find the excitation spectrum from S* = 0 to S" = f l  
that we obtained previously [U]. This is plotted in figure 1 as a function of the 
momenta by crosses of various sizes. For Q = 0 and Q = IF there are enough 
data to allow an extrapolation to the thermodynamic limit by use of the Shanks 
transformation. We have also computed these gaps (Q = 0 and Q = IF) for a 
N = 18 chain. The extrapolation leads to 0.3015 at Q = x and 0.986J at Q = 0. 
In the interval [0, IF] there is only the middle of the Brillouin zone Q = 1~12, where 
we obtain several data points from N = 4, 8, 12, 16. A Sharks extrapolation leads 
then to 2.75J for Q = r/2.  

In the correlation S"' we find the excitation spectrum inside the S' = 0 subspace. 
The lowest-lying excitation is plotted in figure 1 with empty octagons. At Q = IF 
the finitelattice data extrapolate to 0.6555. The convergence in this case, Q = IF, is 
very good, as expected from a massive theory yielding well separated eigenvalues in 
the finite systems [23]. On the contrary, at Q = 0 the convergence is extremely bad 
and one can only suggest a value of 0.60 f 0.053 for this gap. This is clearly due 

In the correlation 
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Figure 1. Dispersion of magnetic 
acilations S' = 0 and S' = il 
from the l a n h  calculations for 
chain lengths N = 4, 4 8, 10, 12, 
14, 16. me energy is in uniw of J 
and the momenta range bum 0 Lo 
r. 'The full WNC is the tesult of 
a variational calculation. The chain 
a w e  k the mmponding edge of 
two-panicle a;cilations. 

to the presence of a continuum of states starting immediately above this gap. Such 
a phenomenon is expected if one describes the spectrum near Q = 0 as due to two 
particles with momenta near Q = T [SI. 

We note that the excitations in this sector ( Z Z )  are above the in-plane excitations 
in the neighbourhood of Q = T, but they cross for Q/a zz 0.75 and on the top of 
the dispersion curve it is the in-plane mode that has highest energy: 2.755 a g a h t  
2.655 (extrapolated value) for the out-of-plane mode. This behaviour persists in the 
region 0 < Q < a/2 of the Brillouin zone. 

lb gain understanding of the nature of the excitations we have performed a 
variational calculation along the lines proposed by GbmezSantos [26]. One discards 
the states with parallel spins, either if they are nearest neighbours or separated by 
any number of zeros. The typical states in this subspace are of the form 

I.. . tlt 0 100 t l  . . .). (4.1) 

There is strict Nee1 ordering of the S' = &l sites, but there can be. any number 
of intermediate zeros. In this subspace the true degrees of freedom are then the 
'spin-zero defects' ie. sites with Sf = 0. These domain walls are then represented as 
fermions (which is a natural way of enforcing no double occupancy). The fermionic 
Hamiltonian can then be treated by approximate methods. It has been shown that a 
simple Hartree-Fock decoupling leads to a good approximation of the spectrum for 
D = 0. The best results are obtained by using the variational improvement introduced 
by G6mezSantos, where one allows a small admixture of states with parallel spins. 
The HiIdane gap, as computed by this method, is found to be 0.455 for D = 0. It 
is straightforward to include anisotropy of the form D C i ( S f ) z .  We have obtained a 
spectrum of massive fermions E(Q), plotted as a continuous curve in figure 1. This 
culve should be the excitation spectrum in the Sz = 0 subspace due to the restriction 
to the subspace (4.1). The gap at Q = a is found to be = 0.705 when D / J  = 0.18. 
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The single-fermion curve E( Q) reproduces extremely well the OP dispersion in the 
region r / 2  < Q < T.  The IP dispersion will be discussed later. 

0.4 4 

0 0.3 0.6 0.9 
0 

0 1 2 3 4 5 
0 

F b r e  2 The structure factor 
scrz)(Q = %,w) + dzz)(Q = 
n, w )  as a function of the kequency 
w (in units of J) tor &ab length 
N = 16. Each of the WO functions 
sua) has a single-peak slructure: 
a single-mode appmaimation works 
very well. The IP mode is doubly 
degenerate and appears only in d==) 
while the op appearr in d=.). 

Figure 3. The S t N C t U E  factor 

r / 2 , w )  as a function d the %e- 
quency w (in units of J). Note hat  
the LP and OP modes are interchanged 
with nespect to the Q = % case (Iig- 
we 2). 

g")(Q = K / 2 , W )  4- SCz')(Q = 

We now turn to a discussion of the spectral weight associated with the peak 
positions. For all chain lengths studied, for all wavevectols in the interval 
[z 0.3-1.0]n, we End that both S'" and Szz are dominated by a single peak as a 
function of the frequency. This peak concentrates at least 93% of the spectral weight. 
Multimapon contributions are thus extremely small in the whole range [c 0.3-1.0]7r. 
As typical examples we plot in figure 2 S""(Q = n,w)+Szz (Q = n ,w)  from the 
N = 16 chain. The peaks have been broadened for clarity. In figure 3 we plot 
the Q = n/2 case showing the interchange of the two modes. A single-mode 
approximation will be an extremely good description of the physics in this part of 
the Brillouin zone. The simple picture described above breaks down for small values 
of Q. In the N = 16 chain, for Q = 3n/8 there is ail1 the one-peak structure, 
while for Q = n/4 there are several peaks as a function of w: see figure 4. In the 
N = 14 chain we find that the continuum appears already for Q = 2n/7 hut is 
not there for 37r/7. It is difficult to give a precise value of the wavevector at which 
this phenomenon appears since the discretization of the momenta imposed by the 
chain length is coarse. As discussed below, this can be interpreted as evidence for 
a two-particle continuum. Our present data suggest that the continuum sets in at 
z 0 . 3 ~  for both IP and OP sectors. We see no reason why the continuum boundaly 
should be the same for both modes, although we are Unable to see any quantitative 
difference in our present data between IP and OP modes in this respect. 

Let us now discuss the nature of the two-particle excitations. If a single-particle 
excitation has a dispersion E( Q),  the lower edge of the continuum of two-particle 
excitations is given by E(2) (Q)  = min,(E(IC) + E(Q - I C ) )  in the non-interacting 
case. Such a free picture seems to apply to the spin-1 chain [1,2,24]. In the 
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g’”)(Q = 0 . 2 5 ~ ,  U)  + SCzz)(Q = 
0.2Sn,w) for N = 16. Here a 
single-mode approximation no longer 
holds and lhe hvo-partide mnfinuum 
b seen: spectral weight is Mnsferred 
to multimapon uatations. 

anisotropic system it is possible to construct several continua since there are two 
distinct modes (m and OP). 

In the S’ = fl subspace two-particle states are obtained from one Sz = =kl 
excitation and one Sz = 0 excitation. The gap of this continuum at Q = 0 will be the 
sum of the m and the OP gap at Q = x, ie. % 0.3015 + 0.6555 in agreement with 
our extrapolation of 0.9865. The continuum is also seen in the poor convergence of 
finite-size data. Its progressive build-up is seen in figure 4. 

In the Sz = 0 subspace there are two ways of building two-particle states: either 
with two S” = 0 states or with one excitation S’ = +1 and one excitation S” = -1. 
In the first case we can obtain an approximation for the continuum boundary by using 
the fermionic method cited above: the curve E@)(Q) for two fermionic excitations 
belonging to the S’ = 0 sector is plotted as a chain curve in figure 1. The two-fermion 
continuum is clearly above the OP (and IP) mode for 0 < Q < r/2.  However, the 
second possibility is that the continuum (S” = +1) + (Sz = -1) has a Q = 0 gap 
that is twice the gap at Q = x for the IP mode, ie. % 0.65. agrees with our 
estimate = 0.65 for the gap in the OP sector at Q = 0. This continuum is thus the 
lowest-lying one. This reasoning shows also that the OP (S’ = 0) mode should be 
below the m mode for Q % 0, since the IP gap is then given by % 0.3015 + 0.6555. 
In fact, as stressed above, we have good evidence that the crossing of the two modes 
occurs quite near Q/x % 0.75. 

The agreement between the ab initio data and the variational calculation confirms 
the relevance of domain walls in the whole Haldane phase, as is also pointed out 
m [32]. The disordered-flat phases obtained in the solid-on-solid picture of the spin-1 
chain [33] also correspond to the subspace of spin-zero defects, which is so suazssful 
in the description of the elementary excitations. 

Finally we quote results for the static structure factors S ( a a ) ( Q )  obtained by 
integration over frequency. In figure 5 these quantities are plotted on a logarithmic 
scale as a function of momentum. Due to our limited chain length, we cannot make 
any firm statement about the prediction [I] of square-root Lorentzian behaviour 
near Q = x. Our data are compatible with previous studies [34,35], pointing to a 
correlation length = 6 lattice spacings in the D = 0 case: the correlation length does 
not change much when D/J = 0.18. The behaviour of SCz2)(Q) QZ sets in only 
for very small wavevectors: for the largest part of the Brillouin zone, except in the 
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Pigum 5. The static sruaure hctors d==) and S(”) for all main lengths as a [unction 
of momentum. The symbol sizes are the same as m figures 1 and 6. Cbss sland for 
dss) and octagons for dzz). 

neighbourhood of Q = r, it is rather close to Q3I2. 

5. Comparison with neutron scattering experiments 

The two magnetic modes in the neighbourhood of Q = r have been observed by INS 
m [17-201. The values of the gaps lead to J % 3.8meV and D / J  = 0.18. These 
values are very close to those extracted from magnetization measurements [36]. The 
dispersion has been studied throughout the whole Brillouin zone [22]. A good fit is 
obtained through the following formula: 

(5.1) U*(&) = [Ai  + II 2 ’ 2  sin (Q) + A 2 ~ Z ( f Q ) ] 1 / Z .  

The parameters are A, = 2.5meY A- = 1.2meV, II = 9.6meV and A = 6.1meV 
Scaling by J = 4meV we plot U*(&) as full curves in figure 6 Fa clarity we have 
also plotted our Lancz6s points. The edges of the two-particle continuum extracted 
from the fits (5.1) are also plotted in figure 6 The lower broken curve corresponds to 
the (S’ = +1) + (S” = -1) continuum, while the upper broken curve corresponds 

There is good agreement with theoretical results in the neighbourhood of Q = n, 
where the IP and OP modes are separated by the experimental resolution [17-20,221. 
In the region r / 2  < Q < n the fits (5.1) are also in agreement with the theoretical 
results. The two modes are no longer separated since they are very close to each 
other. At the top of the dispersion curve Q = r / 2  we estimate the gaps, f” 
the values quoted in section 4, to be 2.755 for the IP mode and 2.655 for the OP. 

to ( S Z  =+I) + (S’ = 0). 
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0 
0 1 2 3 

Momentum 
Feure 6 l a n u &  results cumpared to experimenlal fib. The two full auves are taken 
f“ (5.1). n ~ e y  reprodue the findings of [ZZ]. The hvo chain e w e s  are the hvo- 
magnon mnlinuum boundaries oblained also from (5.1). The r k  d the symbols is 
chmen as in figure 1. 

This means that the IP mode is at c IlmeV and the OP mode at FJ 10.5meV using 
the value of J quoted above. The crossing (or near crossing) of the two modes for 
Q FJ 0.75~ precludes their separation in this region of Q. In the regime Q < r / 2  
the separation of the modes increases, but the intensity of the scattering decreases 
strongly, as is seen kom figure 5. The continuum will appear for Q < 0 . 3 ~  and is not 
seen in present experiments [Z]. We see it for Q = 0 . 2 5 ~  and below, but there the 
structure factor will be very small. For the whole interval 0.3r-1.0r our data are well 
reproduced by long-lived excitations as is seen experimentally 1221. The asymmetry 
with respect to r / 2  of the spectrum (figures 1 and 6) demonstrates the absence of 
broken translational symmetry. The aend of the magnetic intensity against Q in 
figure 5 k that found by INS [22]. Absence of data for Q very close to r forbids us to 
check the square-root Lorentzian behaviour expected for each of the static functions 
S(””) and S(”’). 

With respect to what has already been done, it would be very interesting to 
separate the two modes near r / 2  where intensity is not dramatically weak. The 
observation of the two-particle continuum, on the other hand, should be quite difficult 
since it appears only for Q < 0.25r, where magnetic scattering is very weak. The 
observation of very long-lived modes 1221 is thus in very good agreement with the 
physics of an anisotropic spin-1 chain. 

Finally we comment on the uncertainties in the numerical data. For the gap dues 
there is very good convergence for Q = r and there one can use all the chain lengths 
at our disposal. For other values of Q it is only at the top of the spectrum that an 
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extrapolation can be performed. Concerning the values of Q at which something 
interesting happens (e.g. crossing of the two modes or entering the continuum) 
without being able to make relined extrapolations we can only observe that they 
do not depend much on the chain length. The corresponding numbers should be 
regarded as tentative (i.e. 0.75~ for the crossing and 0.311 for the continuum). 

High-resolution INS experiments [30] have revealed that the IP mode is split by in- 
plane anisotropy E C i [ ( S r ) z  - ( S : ) z ] .  Our results, neglecting this further splitting, 
will thus apply to the description of actual experiments as long as the resolution is 
not very high. This effect is not expected to change greatly the numerical figures. 

6 Conclusion 

We have studied the dynamical properties of a spin-1 chain with single-ion easy- 
plane anisotropy, thought to be relevant to the magnetic behaviour of the compound 
"P. The dynamical structure factor S("")(Q,w) has been computed by a LanczPs 
method on chains of length up to 16 spins, while some pam of the spectrum have 
been obtained on an 18-spins chain. We have performed a variational calculation to 
obtain the spectrum of elementary excitations in the S" = 0 sector. Both ab inirio 
and approximate methods agree very well, elucidating the role of spin-zero defects in 
the Haldane phase. 

We find that the magnetic excitations are described hy two distinct long-lived 
modes throughout most of the Brillouin zone O.?-l.Or, where the lowest excited 
state in each sector (S" = 0 and S2 = zkl) carries almost all of the spectral weight: 
a single-mode approximation is thus adequate. We find that these modes merge into 
a two-particle continuum for Q < 0.3n, as seen in the frequency dependence of the 
structure factor. We have shown that these results reproduce the Iris experimenw on 
NEW. The dispersion of the magnetic modes as well as their intensity is close to that 
found theoretically. 

Our results show that in principle it should be possible to observe the crossing 
of the two IP and OP magnetic modes. At the top of the dispersion curve their 
separation and intensity should allow observation. On the other hand, the edge of 
the two-particle continuum appears only for wry small Q < 0 . 3 ~  where magnetic 
intensity is very weak, as found in recent experiments [Z]. We mention linally that it 
would be very interesting to measure the static form factors of an anisotropic chain 
by a method that allows one to reach the neighbourhood of Q = r, since here we 
are limited by the coarse-graining due to our small chains. Quantum Monte Carlo 
calculations, which work efficiently for static quantities, can reach this goal. 
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